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1. Introduction 

The need for more powerful computers has prompted the development of a number of multi-processor 

machines with multi-tasking capabilities. These are often referred to  as parallel or concurrent processors. 

In this work we are concerned with the development of time-stepping algorithms for transient finite 

element analysis which lend themselves to an efficient implementation on parallel computers. This 

requires the modification of present algorithms t o  suit the new computing environments. In certain 

instances, algorithms that have been discarded for applications on sequential processors must be re- 

examined for possible use on the new parallel machines. 

T w o  essential conditions have t o  be met for an algorithm t o  be suitable for concurrent computers: 

(1) The algorithm must be such that it divides the problem into sub-tasks which require an approxi- 

mately equal amount of computational effort. 

(2) Each sub-task must be as independent as possible. 

The  first requirement ensures that all the processors start  and end their work almost simultaneously, 

thereby reducing the idle time. The second condition is formulated with aview to minimizing the transfer 

of information between processors. In 111 Gentleman pointed out that  the time for data  communication 

from one processor t o  another can be substantial in comparison t o  computation time. 

The element-by-element (E xE) solution procedures [2,3,4] were first proposed t o  reduce storage 

requirements on sequential computers. In 151 it was suggested that ExE algorithms are potentially 
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useful for concurrent processing as well. However, a closer examination reveals that  although the first 

aforementioned requirement is met, the da t a  transfer between sub-problems can be substantial. This 

is mainly due t o  the fact that  ExE methods are based on product algorithms which are inherently 

sequential 

In this paper a new, fully parallelizable class of solution procedures for transient finite element 

analysis is outlined. Further details about the method can be found in IS] .  The algorithms are such 

that any part of the structure can be processed independently of the rest over a time step. Thus, for 

any partition of the structure all the members of the partition can be processed independently and 

simultaneously, Le., concutredly over a time step. The  proposed algorithms have the structure of an 

ezplicit scheme. In particular, no global equation 8oluing eflort i8 inuolued. However, the proposed class 

of algorithmscontains an uncondilionolly8tabfe subcfa88 for which the choice of time step size is dictated 

by accuracy considerations alone. This is a typically implicit-like property. 

In sum, concurrent procedures may be regarded as a hybrid of implicit and explicit schemes which 

exhibits some of the best attributes of both types of methods, such as the unconditional stability of 

implicit algorithms and the concurrency of explicit schemes. This latter feature renders the proposed 

algorithms particularly well suited for a parallel environment. 

2. A clam of unconditionally rtable concurnnt algorithm 

Next we discuss a class of time-stepping algorithms a distinct characteristic of which is that  they 

lend themselves t o  an efficient implementation on parallel processors. The parallel nature of this class 

of algorithms owes t o  the fact that, for any partition of the finite element mesh, each subdomain in the 

partition can be processed independently of the others over a time step. In particular, one can choose 

a partition in which the subdomains are the finite elements themselves. In this case, all of the finite 

elements can be processed concurrently and independently of each other, Le., in parallel It should be 

emphasized, however, that  an element-based partition is just a particular choice among a continuous 

spectrum of possibilities. In practice, the number of subdomains is limited by hardware considerations 

such as the number of processors in a parallel computer. 

For simplicity, the method is next outlined within the context of linear heat conduction. Further 

details as well as an extension of the method t o  the dynamic case can be found in [ 6) .  Upon application 

of the finite element method as a means of spatial discretization the problem is reduced t o  a set of 



semidiscrete equations 

where d denotes the nodal temperature array, M the capacity matrix, K the conductivity matrix and f 

the nodal source vector. In finite element analysis the conductivity and capacity matrices are assembled 

from element contributions through the assembly operation 

e C 

where Ke and Me are the element conductivity and capacity matrices, respectively. 

The application of the method requires that the structure be first partitioned into subdomains. In 

multi-processor computers, the number of such subdomains is typically taken t o  be equal t o  the number 

of processors in the machine. It is interesting t o  note that, unlike the ExE method, the mesh partitions 

can here be chosen with no concern for the connectivity of the subdomains. This greatly facilitates the 

definition of mesh partitions. Let S denote the domain of analysis and {So, o = 1,. . . , N} a given 

partition of the mesh into N subdomains So. We shall use the symbols M', K" and do t o  denote the 

mass and stiffness matrices and the local solution array of substructure So. Thus, do contains the nodal 

values of the solution a t  nodes within So and it  fully determines the state of the subdomain. The local 

matrices Ma and KO are obtained from a partial assembly (2) extended t o  the elements contained in 

subdomain u. Furthermore, let rint E #=1 LIS" - LIS denote the 'interior boundary' of the partition. 

In other words, the interior boundary is the union of the parts of the subdomain boundaries which do 

not lie on the boundary of the overall domain. The restriction of d t o  rin' will be denoted by dint. 

With this terminology, the conceptual algorithm can be stated as follows: 

(i) Localize the initial conditions dn t o  subdomains So to obtain an extended array dm P {dA,. . . , df}. 

(ii) Update local arrays {a:} using an implicit algorithm t o  integrate the decoupled subproblems 

Wd' + K"d" = f" (3) 

Let us denote by the extended predictor so obtained. 

(iii) Mass-average a t  rint t o  obtain dt&. 
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(iv) Integrate again the decoupled subproblems (3) with initial conditions d: and prescribed all-around 

boundary conditions d:!l t o  obtain the updated solution array dn+l. 

Thus, the basic algorithm involves a double pass through the subdomains in the mesh partition. 

The sole purpose of the first pass is t o  determine the updated solution d$!!l on the interior boundary 

rint. The second pass updates the remaining degrees of freedom for known values of the solution on 

the subdomain boundaries. It should be noted that  in both passes all subdomains can be processed 

concurrently. For element-by-element mesh partitions one trivially has d$!!l I dn+1. Under these 

conditions, the second pass does not alter the solution and can be dropped from the algorithm. On the 

other extreme, if the structure is not partitioned a t  all one trivially recovers the implicit schemes. 

REMARK 2.1. The  choice of a mass-averagingrule is not arbitrary. It can be shown [ 61 that  this is 

in fact the only choice of averaging rule which renders the algorithm consistent with the global equations 

of evolution. The mass-averaging rule is implemented as follows. The result of each local update a:+, 
is first weighted by the local capacity matrix M'. The  resulting local arrays are assembled into a global 

vector which is then multiplied by M-'. 0 

REMARK 2.2. The  practicality of the method clearly requires the use of a lumped capacity matrix. 

For most practical purposes, however, this is not a particularly stringent limitation. 0 

REMARK 2.9. In general, the proposed algorithm can only be expected t o  be first-order accurate, 

i.e., dn+l = d(Zn + h)  + O(h2) whenever dn = d(t,). In [ 6 1 it is shown how higher-order algorithms 

can be derived from the first-order scheme discussed here. 0 

REMARK 2.4. It should be noted that  the updates of the subdomains involve local operations 

only. In particular, the global stiffness matrix need not be assembled a t  any time during the integration 

process, much less factorized. 0 

REMARK 2.5. A particularly promising feature of the proposed class of algorithms is the fact that  

they are amenable t o  a fully parallel implementation, whereby all the subdomains in the partition are 

processed concurrently and independently of each other over a time step. I t  should be emphasized that  

the mesh partitions can be defined in a completely arbitrary manner, with no concern for the connectivity 

of the subdomains. This greatly facilitates the definition of mesh partitions. Another interesting aspect 

of the algorithm is that  exchange of information between the subdomains is only required at the end of 

a time step. This has the effect of reducing the extent of interprocessor communication t o  a minimum. 
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All this is in sharp contrast t o  other ’semi-implicit’ schemes proposed in the past which, although 

parallelizable t o  some extent, are inherently sequential, require elaborate schemes to define the mesh 

partitions and involve interprocessor communications during each time step. 0 

REMARK 2.6. Clearly, the properties of the proposed concurrent procedures depend on the choice 

of local update algorithm. I t  can be shown [ 61 based on Iron’s bounding principle [7] that  if the local 

algorithms are unconditionally stable then resulting concurrent procedure is also unconditionally stable. 

In other words, concurrent procedures preserve the stability of the local algorithms utilized t o  update 

the subdomains. 0 

A first numerical example is shown in Fig. 1. The analysis is concerned with linear heat conduction 

in a bar with prescribed boundary conditions a t  both ends. The bar was discretized into 100 linear 2- 

node elements and the resulting mesh partitioned into 4 subdomains each containing 25 elements. The 

decoupled subproblems were integrated using the backward-Euler algorithm. Fixed time step sizes were 

utilized throughout the integration process. As may be seen from Fig. 2, the computed results exhibit 

good accuracy over a wide range of time steps. 

3. Accuracy under ruccersive reflnementr of the partltlon 

The question that naturally arises now is what is the effect on the overall accuracy of the algorithm 

of successive refinements of the mesh partition. The question is motivated by the observation that the 

smaller the subdomains in the partition the cheaper is one application of the algorithm. In particular, 

when element-by-element mesh partitions are utilized the cost of one application of the algorithm is 

reduced to a minimum. However, numerical experiments inmediately show that increasing the number 

of subdomains has an adverse influence on the accuracy of the algorithm. This effect is best illustrated 

by examining the limiting case of element-by-element partitions of the mesh. In this case, the major 

restriction on the time step size stems from the fact that  one application of the algorithm propagates 

element information to  adjacent elements only. This limited flow of information is particularly stringent 

when analyzing parabolic systems which are far away from equilibrium. In such cases, information needs 

t o  be rapidly exhanged between distant sections of the structure. The situation is aggravated by fine 

meshes for which information has t o  traverse many elements at the expense of many applications of the 

algorithm before it is propagated over an appreciable distance. A similar analysis for another class of 

algorithms has been reported elsewhere [SI. 
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These considerations point to the need of combining element-by-element partitions with a step- 

changing technique to  control accuracy. Here the aim is t o  devise a criterion whereby the time step size 

is automatically reduced when rapid flow of information is required and increased whenever accuracy 

permits. A simple strategy is based on Richardson's extrapolation and uses the difference between 

two solutions dn(h /2 )  and dn(h) obtained with step sizes h/2  and h, respectively, to estimate the local 

truncation error as 

(see, e.g., 191 where alternative methods are given). Based on this estimate it is possible to determine 

the extent by which the time step size h has t o  be reduced or can be increased t o  satisfy a local trucation 

error condition 

for some given tolerance r .  

The performance of element-by-element concurrent algorithms can be illustrated by means of the 

problem stated in Fig. 3. The  analysis is concerned with linear heat conduction in a circular region 

subjected t o  a sudden temperature rise along the boundary. A mesh of 100 isoparametric 4-node elements 

was  employed. The  Crank-Nicolson algorithm (see, e.g., [lo]) was utilized for the local updates. The  

error norm involved in estimate (4) was taken t o  be 11 d where n denotes the number 

of degrees of freedom in the model. Fig. 4a shows a comparison between the exact solution and the 

results obtained for local truncation error tolerances r = lo'' and The more stringent tolerance 

is seen t o  result in accurate predictions. As larger local truncation errors are allowed, a loss of accuracy 

is observed which manifests itself as an overly slow relaxation. 

(i 

The  behavior of the step-changing procedure is exhibited in Fig. 4b. It is seen that  during the first 

stages of the relaxation process when the system is far away from thermal equilibrium accuracy demands 

the use of small time steps. As the system relaxes, the required step size steadily increases. Whereas 

for explicit integration this growth has t o  be stopped a t  the critical time step he to avoid numerical 

instabilities, concurrent algorithms can be used with time steps of any size as accuracy permits. Fig. 

4b shows how the critical time step he is eventually exceeded without instabilities in the response or 
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any significant loss of accuracy. As a result, the 'average time step', Le., the duration of the analysis 

divided by the total number of time steps can be substantially larger for concurrent algorithms than 

for explicit schemes, which renders the former more economical. In view of this numerical evidence, 

it should be emphasized that  an efficient implementation of the method based on element-by-element 

mesh partitions within the context of parabolic problems requires that i t  be combined with a time 

step-changing technique. 

The above numerical results clearly indicate that increasing the number of subdomains in the mesh 

partition has two opposite effects. On one hand, one application of the algorithm becomes increasingly 

cheaper. On the other hand, t o  maintain a given level of accuracy the time step has t o  be decreased, 

which adds t o  the cost of the analysis. The question is which effect dominates and whether using 

concurrent procedures instead of implicit algorithms is cost effective. That  this is so can be illustrated 

by means of a simple example. Consider the nonlinear 3D dynamic analysis of a cube subdivided into 

N equal subdomains. The case of implicit integration corresponds t o  N = 1. Numerical tests show that  

t o  maintain the same level of accuracy obtained from implicit schemes the time step has t o  chosen so as 

t o  satisfy a Courant condition based on the dimensions of the subdomains. Thus, the time increment 

has t o  be decreased as O(l/N'/3) as the number of subdomains increases and consequently the number 

of steps in the analysis has t o  be increased as O(N'lS). On the other hand, the number of degrees of 

freedom per subdomain decreases as 0(1/N) and the bandwith as O(l/N2/S). Therefore, the execution 

time involved in factorizing a local array decreases as O( l/N713). Identifying the cost of one application 

of the algorithm with that of one local factorization then the total execution time for the analysis goes 

as O(N'/') x O(l/N7/3) M O(l/N2). This shows that concurrent algorithms may be expected to  cut 

down significantly on execution times with respect t o  implicit algorithms. Similar estimates hold for 2D 

hyperbolic and 2D and 3D parabolic problems. 

4. Summary and concluslonr 

A new family of algorithms has been outlined which would appear t o  be particularly well-suited for 

implementation in a parallel environment. This owes to the fact that  for any partition of the mesh each 

subdomain in the partition can be processed over a time step simultaneously and independently of the 

rest. The method eliminates the need for assembling and factorizing large global arrays while retaining 

the unconditional stability properties of the algorithms used a t  the local level. To critically appraise the 

proposed methodology, two limiting cases may be considered: 
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Element-by-element merb partltionr. An appealing feature of element-by-element partitions is 

that they render the implementation of the method a trivial exercise. Thus, for any finite element code 

with an explicit algorithm the method can be implemented by merely replacing the usual element stiffness 

and conductivity matrices by suitably modified ones. Furthermore, this choice of partition has the effect 

of minimizing storage requirements and arithmetic operations per time step. I t  is interesting t o  note that 

the first order method requires the same number of arithmetic operations per time step as the single 

pass ExE method. However, for dynamic problems numerical experiments demonstrate the superior 

accuracy of concurrent algorithms over the ExE method discussed in 131. For parabolic problems, 

concurrent algorithms based on element-by-element partitions share the same accuracy limitations as 

explicit schemes and ExE methods. These limitations arise as a consequence of the limited flow of 

information per time step allowed by the algorithms. However, as shown above the combination of 

concurrent algorithms with a step changing technique results in an accurate and reliable procedure 

which can be significantly more economical that  explicit schemes. 

Coarse mesh partltlons. The  use of coarse mesh partitions is a natural choice when implementing 

the method in concurrent computers. In a parallel environment, the number of subdomains in the 

partition is dictated by the number of processors in the machine. Remarkably, the numerical evidence 

presented above shows that the use of coarse mesh partitions is also optimal from the standpoint of both 

accuracy and cost efficiency. Thus, it would appear that  by far the most promising characteristic of the 

proposed algorithms is their suitability for an efficient and straightforward parallel implementation. By 

contrast, in this context ExE procedures are cumbersome particularly when applied t o  structures with 

complicated topologies. Even for regular meshes the ExE method may not be amenable forafullyparallel 

implementation. For instance, for a rectangular domain with a regular mesh some degree of parallelism 

can be obtained from the ExE method as a consequence of the fact that  the mesh can be partitioned into 

four disjoint groups. Then, the elements in each group can be processed concurrently but the groups have 

t o  be processed sequentially. Thus, even in this simple case full parallelism cannot be achieved with the 

ExE method. For arbitrary 2D and 3D topologies a graph coloring algorithm has to be implemented t o  

partition the mesh into disjoint subdomains. This task  is by no means trivial. Furthermore, simple bar 

models can be formulated for which no degree of parallelism a t  all can be obtained from the ExE method. 
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In addition, even in the cases where disjoint groups can be easily found, when the processing of a group is 

completed a set of da t a  pertaining tothe intermediate eolution haa to be truurferred between processors. 

The time and cost involved in these operations can be substantial 111. By contrast, the method presented 

here requires no special partitioning schemes and performs fewer interprocessor communications. 

In conclusion, whereas the proposed methodology can be useful in sequential machines as well, i t  

would appear t o  be most promising as it bears on parallel computation. It should also be emphasized 

that extensions of the method t o  nonlinear problems are possible. 
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L = 100 

MAT E R I A L PROPE RT I E S 

m, = mlO, = 0.5 

m2= m3 = ---- = m l O O  = 

kIO0 = k,  = k 2  = ----= 

.o 

.o 

BOUNDARY CONDITIONS : 

d , ( t )  = 0.0 

d , , , ( t ) =  1.0 

IN IT IAL  CONDITIONS : 

d, = d, = ---- = d,,, = 0.0 

Fig. 1. Definition of test problem: heat conduction in a bar with prescribed temperatures at both 

ends. 
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Fig. 9. Definition of test problem: heat conduction in a circular domain subjected to  a sudden rise 

in temperature along its exterior boundary. 
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